Context-Based Scene Recognition Using Bayesian Networks with Scale-Invariant Feature Transform
نویسندگان
چکیده
Scene understanding is an important problem in intelligent robotics. Since visual information is uncertain due to several reasons, we need a novel method that has robustness to the uncertainty. Bayesian probabilistic approach is robust to manage the uncertainty, and powerful to model high-level contexts like the relationship between places and objects. In this paper, we propose a context-based Bayesian method with SIFT for scene understanding. At first, image pre-processing extracts features from vision information and objectsexistence information is extracted by SIFT that is rotation and scale invariant. This information is provided to Bayesian networks for robust inference in scene understanding. Experiments in complex real environments show that the proposed method is useful.
منابع مشابه
Hierarchical Matching Pursuit for Image Classification: Architecture and Fast Algorithms
Extracting good representations from images is essential for many computer vision tasks. In this paper, we propose hierarchical matching pursuit (HMP), which builds a feature hierarchy layer-by-layer using an efficient matching pursuit encoder. It includes three modules: batch (tree) orthogonal matching pursuit, spatial pyramid max pooling, and contrast normalization. We investigate the archite...
متن کاملPose - invariant , model - based object recognition , using linear combination of views and Bayesian statistics . Vasileios
3
متن کاملDPML-Risk: An Efficient Algorithm for Image Registration
Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...
متن کاملDetection of Copy-Move Forgery in Digital Images Using Scale Invariant Feature Transform Algorithm and the Spearman Relationship
Increased popularity of digital media and image editing software has led to the spread of multimedia content forgery for various purposes. Undoubtedly, law and forensic medicine experts require trustworthy and non-forged images to enforce rights. Copy-move forgery is the most common type of manipulation of digital images. Copy-move forgery is used to hide an area of the image or to repeat a por...
متن کاملWeak textured object recognition and localization using SESI
This paper approaches the problem of recognizing and localizing object with curved smooth and weak textured surfaces in a cluttered scene. In this work we present a new local invariant feature, SUSAN edgebased scale invariant feature (SESIF), to describe weak textured object, such as insulator, which is detected in a scalespace with scale selection. Different from several previous local invaria...
متن کامل